

Set Medoid

Given set $S = \{x(1), \ldots, x(N)\}$, the *energy* of element $i \in$ $\{1, \ldots, N\}$ is,

$$E(i) = \frac{1}{N} \sum_{j \in \{1,...,N\}} \text{dist}(x(i), x(j)).$$

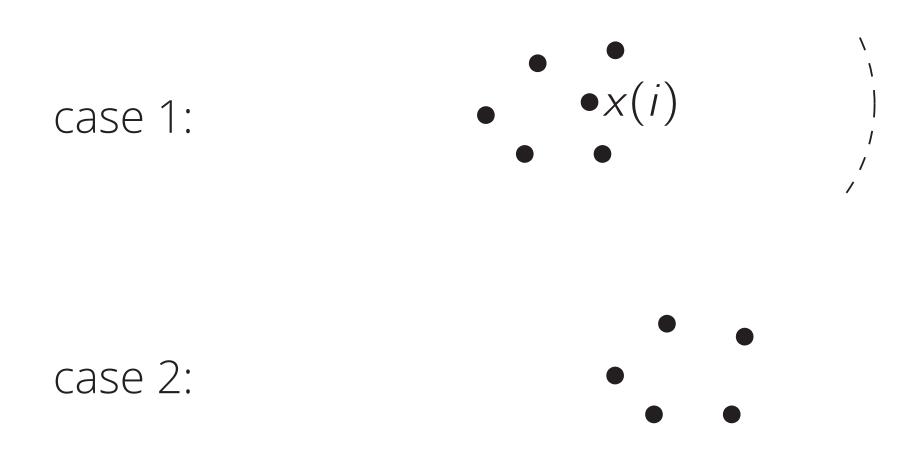
The element in \mathcal{S} with minimum energy is the *medoid*. The problem of finding the medoid arises in facility allocation, network analysis and clustering. In the general case, there is no sub-quadratic exact algorithm, but we present an $O(N^{3/2})$ algorithm in \mathbb{R}^d , which uses the triangle inequality to bound distances.

Using the Triangle Inequality

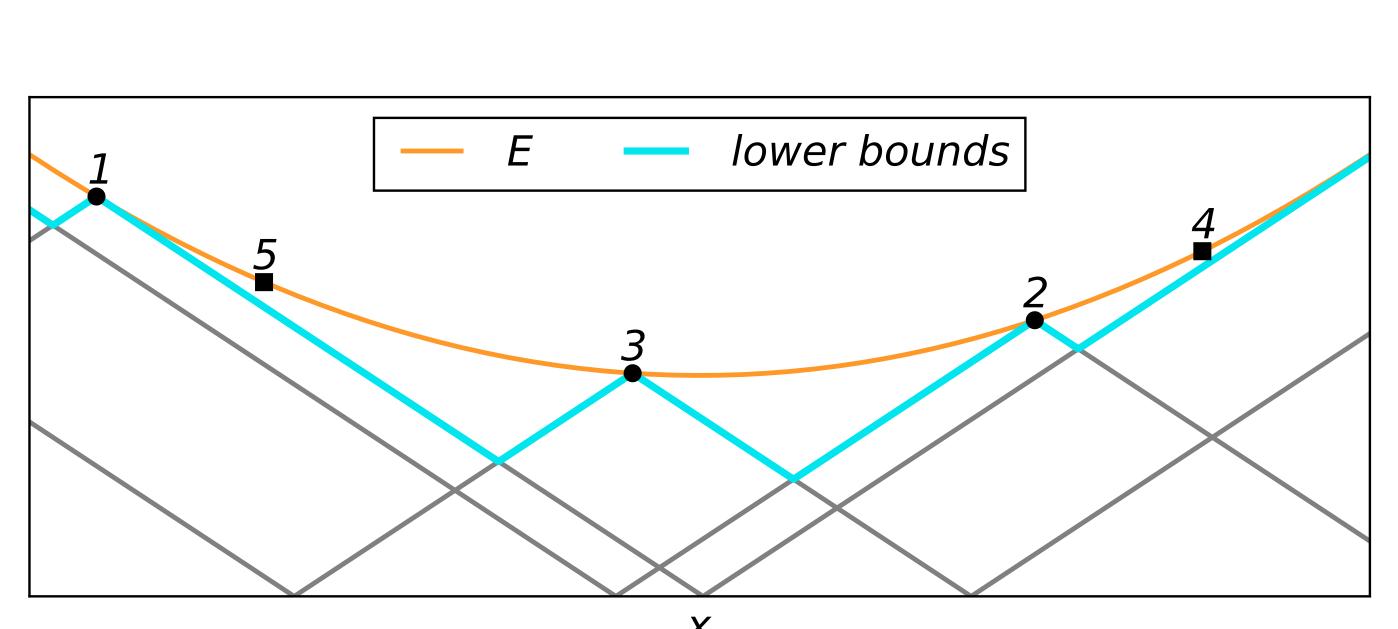
When E(i) is known, we can use

$$|E(i) - \operatorname{dist}(x(i), x(j))| \leq E(j)$$

to eliminate *j* as a medoid candidate, saving *N* distance calculations.



The technique is effective when x(i) and x(j) are far or nearby (case 2). We keep lower bounds on all energy them whenever distances are computed. Below, bo and x(5), obtained from distances to x(1), x(2) and x(3), eliminate them as medoid candidates.



A Sub-Quadratic Medoid Algorithm

James Newling & François Fleuret {james.newling,francois.fleuret}@idiap.ch

Proposed Algorithm

1: $I(i) \leftarrow 0$ for all i 2: $m^{cl}, E^{cl} \leftarrow -1, \infty$ the (c)urrent (l)owests 3: **for** $i \in \text{shuffle}(\{1, ..., N\})$ **do** if $I(i) < E^{cI}$ then 4: for $j \in \{1, ..., N\}$ do 5: $d(j) \leftarrow \operatorname{dist}(x(i), x(j))$ 6: end for 7: $l(i) \leftarrow \frac{1}{N} \sum_{j=1}^{N} d(j)$ 8: if $I(i) < E^{cI}$ then 9: $m^{cl}, E^{cl} \leftarrow i, l(i)$ 10: end if 11: for $j \in \{1, ..., N\}$ do 12: $I(j) \leftarrow \max(I(j), |I(i) - d(j)|)$ 13: end for 14: end if 15:

16: **end for**

Theoretical Results

Theorem 3.1 *The algorithm finds the medoid.*

proof summary. Using the triangle inequality one can show that lower bounds remain consistent at line 13.

Theorem 3.2 Assume $S = \{x(1), \ldots, x(N)\} \subset \mathbb{R}^d$ are drawn independently from p.d.f. f_X . Let the medoid of S be $x(m^*)$, with $E(m^*) = E^*$. Suppose there exist strictly positive constants ρ, δ_0 and δ_1 such that for all N, with probability 1 - O(1/N)

 $||x - x(m^*)|| < \rho \implies \delta_0 \leq f_X(x) \leq \delta_1$

Let $\alpha > 0$ be a Lipschitz constant (independent of N) such that with probability 1 - O(1/N) all $i \in \{1, \ldots, N\}$ satisfy,

$$\|x(i) - x(m^*)\| < \rho \implies E(i) - E^*$$

Then the expected number of computed elements is

$$O\left(V_d\delta_1 N^{\frac{1}{2}} + d\left(\frac{4}{\alpha}\right)^d N^{\frac{1}{2}}\right),$$

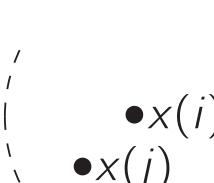
where V_d is the volume of a unit hypersphere in \mathbb{R}^d .

proof summary. Case 1 eliminates far away elements. Case 2 creates *elimination balls*, the number of which beyond radius $N^{-1/2d}$ is bounded volumetrically (first term above). The expected number of sampled elements within radius $N^{-1/2d}$ is the second term.

Taway (case 1)
Trgies, updating bunds for
$$x(4)$$

•x(i)•x(j)

• $\chi(j)$

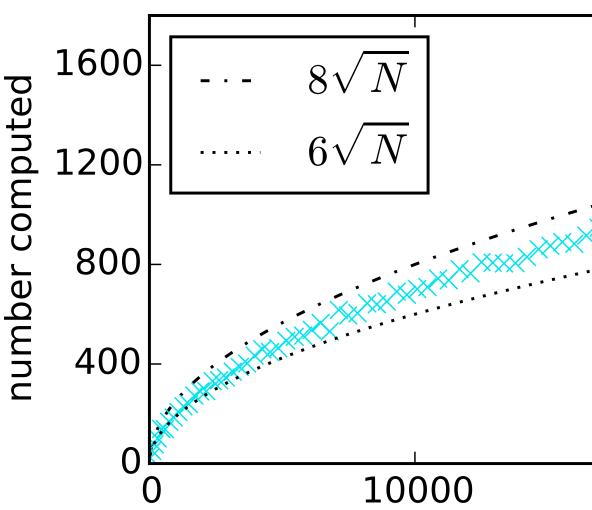


 $\geq \alpha \|x(i) - x(m^*)\|^2.$

Previous Works

In 1-D Quickselect is O(N). A related problem is finding the geomteric median: the point in a vector space which minimises energy. The most closely related algorithm to ours is TOPRANK of Okamoto et al. (2008), which estimates distances, and has complexity $\tilde{O}(N^{5/3})$.

Experimental Results

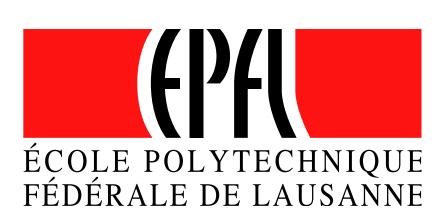


uniformly from $[0, 1]^2$

			TOPRANK	Proposed Alg.
dataset	type	N	n	î
Birch 1	2-d	1.0×10^{5}	57944	2180
Birch 2	2-d	$1.0 imes10^5$	66062	2208
Europe	2-d	$1.6 imes 10^{5}$	176095	2862
U-Sensor Net	u-graph	$3.6 imes 10^{5}$	113838	1593
D-Sensor Net	d-graph	$3.6 imes10^5$	99896	1372
Penn. road	u-graph	$1.1 imes 10^6$	216390	2633
Europe Rail	u-graph	4.6×10^{4}	35913	518
Gnutella	d-graph	$6.3 imes 10^{3}$	7043	6328
MNIST	784-d	6.7×10^{3}	7472	6514

Above: The mean number of computed elements (\hat{n}) over 10 runs using **TOPRANK** and our proposed algorithm. Our algorithm displays good performance on spatial network data using the shortest path distance, but performs poorly on social network data (Gnutella) and in high-dimensions (MNIST), although **TOPRANK** does too.

Acknowledgements



S		
20000	30000	40000

Above: experimental validation of Theorem 3.2, where the number of computed elements is $O(N^{1/2})$. Samples are points drawn

