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Set Medoid
Given set S = {x(1), . . . , x(N)}, the energy of element i ∈
{1, . . . , N} is,

E(i) =
1

N

∑
j∈{1,...,N}

dist(x(i), x(j)).

The element in S with minimum energy is themedoid. The problem
of finding the medoid arises in facility allocation, network analysis
and clustering. In the general case, there is no sub-quadratic exact
algorithm, but we present an O(N3/2) algorithm in Rd , which uses
the triangle inequality to bound distances.

Using the Triangle Inequality
When E(i) is known, we can use

|E(i)− dist(x(i), x(j))| ≤ E(j)
to eliminate j as a medoid candidate, saving N distance calcula-
tions.
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x(i)
x(j)

The technique is effective when x(i) and x(j) are far away (case 1)
or nearby (case 2). We keep lower bounds on all energies, updating
them whenever distances are computed. Below, bounds for x(4)
and x(5), obtained from distances to x(1), x(2) and x(3), eliminate
them as medoid candidates.
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Proposed Algorithm
1: l(i)← 0 for all i
2: mcl , Ecl ← −1,∞ the (c)urrent (l)owests
3: for i ∈ shuffle ({1, . . . , N}) do
4: if l(i) < Ecl then
5: for j ∈ {1, . . . , N} do
6: d(j)← dist(x(i), x(j))
7: end for
8: l(i)← 1

N

∑N
j=1 d(j)

9: if l(i) < Ecl then
10: mcl , Ecl ← i , l(i)

11: end if
12: for j ∈ {1, . . . , N} do
13: l(j)← max(l(j), |l(i)− d(j)|)
14: end for
15: end if
16: end for

Theoretical Results
Theorem 3.1 The algorithm finds the medoid.
proof summary. Using the triangle inequality one can show that
lower bounds remain consistent at line 13.
Theorem 3.2 Assume S = {x(1), . . . , x(N)} ⊂ Rd are drawn in-dependently from p.d.f. fX . Let the medoid of S be x(m∗), with
E(m∗) = E∗. Suppose there exist strictly positive constants ρ, δ0 and
δ1 such that for all N , with probability 1−O(1/N)

‖x − x(m∗)‖ < ρ =⇒ δ0 ≤ fX(x) ≤ δ1,

Let α > 0 be a Lipschitz constant (independent of N) such that withprobability 1−O(1/N) all i ∈ {1, . . . , N} satisfy,
‖x(i)− x(m∗)‖ < ρ =⇒ E(i)− E∗ ≥ α‖x(i)− x(m∗)‖2.

Then the expected number of computed elements is
O

(
Vdδ1N

1
2 + d

(
4

α

)d
N
1
2

)
,

where Vd is the volume of a unit hypersphere in Rd .
proof summary. Case 1 eliminates far away elements. Case 2 cre-
ates elimination balls, the number of which beyond radius N−1/2d is
bounded volumetrically (first term above). The expected number
of sampled elements within radius N−1/2d is the second term.

Previous Works
In 1-D Quickselect is O(N). A related problem is finding the ge-omteric median: the point in a vector space which minimises en-
ergy. The most closely related algorithm to ours is TOPRANK of
Okamoto et al. (2008), which estimates distances, and has com-
plexity Õ(N5/3).

Experimental Results
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Above: experimental validation of Theorem 3.2, where the num-
ber of computed elements is O(N1/2). Samples are points drawn
uniformly from [0, 1]2

TOPRANK Proposed Alg.
dataset type N n̂ n̂

Birch 1 2-d 1.0× 105 57944 2180
Birch 2 2-d 1.0× 105 66062 2208
Europe 2-d 1.6× 105 176095 2862

U-Sensor Net u-graph 3.6× 105 113838 1593
D-Sensor Net d-graph 3.6× 105 99896 1372
Penn. road u-graph 1.1× 106 216390 2633
Europe Rail u-graph 4.6× 104 35913 518
Gnutella d-graph 6.3× 103 7043 6328
MNIST 784-d 6.7× 103 7472 6514

Above: The mean number of computed elements (n̂) over 10 runs
using TOPRANK and our proposed algorithm. Our algorithm displays
good performance on spatial network data using the shortest path
distance, but performs poorly on social network data (Gnutella)
and in high-dimensions (MNIST), although TOPRANK does too.
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