sondap

Abstract

We present a scheme for K-means seeding, which results in a 3% geometric mean reduction in K-means loss as compared to vanilla K-means++ seeding, on 16 publicly available datasets. It is based on the CLARANS K-medoids algorithm of Ng and Han (1994).

K-medoids

Given samples $\mathcal{X}=\{x(1), \ldots, x(N)\}$, function dist : $\mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{+}$ and monotonic energy function $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, find $\mathcal{C} \subset\{1, \ldots, N\}$ where $|\mathcal{C}|=K$ to minimize

$$
E=\sum_{i=1}^{N} \min _{i^{\prime} \in \mathcal{C}} \psi\left(\operatorname{dist}\left(x(i), x\left(i^{\prime}\right)\right)\right) .
$$

It has applications in clustering sequences, graph vertices, sparse and dense vectors, etc. Two popular algorithms are,

- MEDLLOYD (Hastie et al. 2001, Park and Jun, 2009), like Lloyd's algorithm, but centroids are replaced by medoids
- CLARANS (Ng and Han, 1994), random swaps between centers and non-centers are proposed, and only accepted if $E(\mathcal{C})$ decreases.
K-means and K-means seeding
The K-means task is to find K centers, $\{C(1)$,
$C(K)\}$, not nec essarily elements of $\{x(1), \ldots, x(N)\}$, to minimize

$$
\begin{equation*}
E=\sum_{i=1}^{N} \min _{k \in\{1, \ldots, K\}}\|x(i)-C(k)\|_{2}^{2} \tag{1}
\end{equation*}
$$

In the popular LLOYD algorithm centers are initialized or seeded as a subset of \mathcal{X}. Good seeding is critical to avoid poor local minima. Most seeding algorithms attempt to minimize initial energy (K means++, Bradley-Fayad, etc.). Minimizing seeding energy is the special case of K-medoids with

$$
\operatorname{dist}\left(x(i), x\left(i^{\prime}\right)\right)=\left\|x(i)-x\left(i^{\prime}\right)\right\|_{2} \quad \text { and } \quad \psi(v)=v^{2} .
$$

This motivates the use of other popular and well established K medoids algorithms for K-means seeding.

Acknowledgements
This work was sponsoreed by HASLERSTIFTUNG

K-medoids for K-means seeding

James Newling \& François Fleuret \{james.newling,francois.fleuret\}@idiap.ch

The CLARANS K-medoids algorithm

The algorithm iteratively proposes swapping a medoid $x\left(i_{-}\right)$with a non-medoid $x\left(i_{+}\right)$. Only energy reducing swaps are implemented.

```
Initialize center indices \(\mathcal{C} \subset\{1\),
\(N\}\), where \(|\mathcal{C}|=K\)
\(E \leftarrow \sum_{i=1}^{N} \min _{i^{i} \in \mathcal{C}} \psi\left(\operatorname{dist}\left(x(i), x\left(i^{\prime}\right)\right)\right.\)
: while stopping criterion false do
    sample \(i_{-} \in \mathcal{C}\) and \(i_{+} \in\{1, \ldots, N\} \backslash \mathcal{C}\)
    \(E^{+} \leftarrow \sum_{i=1}^{N} \min _{i^{\prime} \in \mathcal{C} \backslash\{i,\} \cup\{i+\}} \psi\left(\operatorname{dist}\left(x(i), x\left(i^{\prime}\right)\right)\right)\)
    if \(E^{+}<E\) then
        \(\mathcal{C} \leftarrow \mathcal{C} \backslash\left\{i_{-}\right\} \cup\left\{i_{+}\right\}\)
        \(E \leftarrow E^{+}\)
    end if
: end while
```

Five routes to K-means local minima
(Below) Clustering with $K=12^{2}$ centers on a $2-d$ grid, $N=25 K$ samples. First row: the generated samples. Second row: uniform and K-means++ seedings. Third row: K-medoids refinements. Fourth row: final LLOYD clusterings. CLARANS refinement results in reduced final E.

Accelerating the CLARANS algorithm

There are many more evaluations (line 5) than implementations. As suming balanced clusters, and that dist satisfies the triangle in equality, we present a technique where evaluation is $O(N / K)$, and implementation is $O(N)$. It requires recording,

- for non-centers (such as $\times(1)$ below), distance to nearest (d_{1}) and second nearest (d_{2}) centers (as in Ng and Han),
- for centers (such as $\times(2)$ below), maximum over cluster of d_{1} and d_{2} (R_{1} and R_{2} respectively), and distances to all centers.

$$
\sim_{x} \times 1
$$

$$
\begin{equation*}
d_{d_{1}}^{x(1} \tag{*}
\end{equation*}
$$

${ }_{*}^{R_{1}} \not \overbrace{}^{x(2)}$
R_{2}
Results
(Below) An experiment with an RNA dataset, $N=16 \times 10^{4}, d=8$ and $K=4 \times 10^{2}$. With 50 runs seeded with K-means ++ (red), and several runs with CLARANS inbetween K-means and K-means++ (blue). The best run without CLARANS has 6\% higher E.

(Below) Summary for 16 datasets. Each point is an experiment with same setup as RNA, horizontal position is reduction in E with CLARANS. Dimensions range in $d: 2 \rightarrow 90, N: 1484 \rightarrow 488565$. At $K \sqrt{N}$, mean reduction is 3.2% vs K-means++ and 1.2% vs greedy K-means++ (not shown).

(On github)
sequences, sparse vectors, various
dist, ϕ, etc.

