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K-Means
Problem Statement and Lloyd's Algorithm

Given data (%), € (RN, find centers (ck)i_; € (R)K
minimising

N

;kmlif}( lIxi — cill.
NP-hard, so heuristic algorithms such as Lloyd's are used
Lloyd's algorithm run for T iterations requires dKNT FLOPs

We are interested in making it faster
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Lloyd's Algorithm
x : data e . centers
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Lloyd's Algorithm
Assignment of datapoint at iteration 1
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Lloyd's Algorithm

All assignments at iteration 1
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Lloyd's Algorithm
Updates at iteration 1
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Lloyd's Algorithm
Assignment of datapoint at iteration 2
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Lloyd's Algorithm

All assignments at iteration 2
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Lloyd's Algorithm
Updates at iteration 2
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Lloyd's Algorithm
Assignment of datapoint at iteration 3
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Lloyd's Algorithm

All assignments at iteration 3
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Lloyd's Algorithm
Updates at iteration 3
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Lloyd's Algorithm
Assignment of datapoint at iteration 4
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Lloyd's Algorithm

All assignments at iteration 4
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Lloyd's Algorithm
Updates at iteration 4
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Lloyd's Algorithm

How to Accelerate

Two approaches :
(1) approximate it

(2) be more efficient - get exactly the same output as Lloyd's
algorithm without all data-center distances

¥ Pelleg et al. (1999) A Elkan (2003) best high-d
¥ Kanungo et al. (2002) A Yinyang (2015) best mid-d
A Hamerly (2010) A Annular (2013) best low-d
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Lloyd's Algorithm

How to Accelerate

Two approaches :

(1) opproximate-it only exact for next 13 minutes

(2) be more efficient - get exactly the same output as Lloyd's
algorithm without all data-center distances

¥ Pelleg et al. (1999) A Elkan (2003) best high-d
¥ Kanungo et al. (2002) A Yinyang (2015) best mid-d
A Hamerly (2010) A Annular (2013) best low-d

3/9



Using The Triangle Inequality

Elkan's Two Techniques

Elkan uses the triangle inequality in two distinct ways

(1) center-center distances to bound data-center distances

(2) directly maintain bounds on data-center distances
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Using The Triangle Inequality

Elkan's Two Techniques

Elkan uses the triangle inequality in two distinct ways
(1) center-center distances to bound data-center distances

(2) directly maintain bounds on data-center distances

N SN

(A) We show that (1) + (2) is slower than just (2). Simplifying helps!
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Usi gThT gll equality
Elkan 1 lower bounds
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Using The Triangle Inequality
Yinyang group lower bounds
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Using The Triangle Inequality
Hamerly 1 lower bound
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Lower bound updating
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Lower bound updating

1> -]l-bound

> |l - l-bound

6/9



I > -|l-bounds

All' upper and lower bounds in Elkan, Hamerly, Yinyang, Annular
are > || - [[-bounds, and can be replaced by tighter || > -||-bounds.

Thereis a cost to || > +||[-bounds, additional memory is required:

« Store historical centers from all rounds
« Store the round in which bounds are made tight

This memory overhead can be controlled by periodically clearing
the history, requiring a >_ || - [[-bound update
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I > -|l-bounds

All' upper and lower bounds in Elkan, Hamerly, Yinyang, Annular

are > || - [[-bounds, and can be replaced by tighter || > -||-bounds.

Thereis a cost to || > +||[-bounds, additional memory is required:

« Store historical centers from all rounds
« Store the round in which bounds are made tight

This memory overhead can be controlled by periodically clearing
the history, requiring a >_ || - [[-bound update

(B) We show that || > -||-bounding generally improves algorithms.
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Hamerly (2010) bound test, failure 1
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Hamerly (2010) bound test, failure 2
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Hamerly (2010) compute all distances




Hamerly (2010) reset bounds
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Eliminating distance calculations

cE€B(x,r)=c&{c), g
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r = maxce{cg/dycgld} ||X — C||
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Annular (2013) elimination zone

el > lIxl[ +r=c&B(x,r) (e:

centers eliminated )
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Annular (2013) elimination zone
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Annular (2013) elimination zone

[llcll = [Ix[I| < r=c¢&B(x,r) (e: centerseliminated)

elimination
O(log N) if
llc|| sorted
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Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)
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Exponion (ours) elimination zone

lle = gl > 2llx — g9l + lIx — gl =

c & B(x,r)
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Exponion (ours) elimination zone

llc — cg/d|| >R=c¢B(x,r)

(e : centers eliminated )
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Exponion (ours) elimination zone

(C) We find that Exponion is generally faster than Annular
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Experiments and Results

22 datasets(d : 2 — 784, N : 60k — 2.6m) and K € {100, 1000}

4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch
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Experiments and Results

22 datasets(d : 2 — 784, N : 60k — 2.6m) and K € {100, 1000}

4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

(A) Simplification accelerates,
e Elkan in 16/18 high-d experiments, mean speed-up 15%
e Yinyang in 43/44 all-d experiments, mean speed-up 60%

(B) Replacing > || - ||-bounding by || > -||-bounding helps
e In high-d speed-up in 15/20 experiments, mean speed-up of
12%

(C) Exponion is generally faster than Annular
e In low-d Exponion is faster than Annular in 18/22 experiments,
mean speed-up of 35%
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Conclusion

%]
Speed-up: run-times 2 o8
of any of the other 4 2 06l |
implementations of 2
any algorithm c 040 1
relative to our fastest % 02 L i
implementations of 2
our algorithms 0 0 8

speed-up
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Speed-up: run-times 2 o8
of any of the other 4 2 06l
implementations of 2
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relative to our fastest % 02 L
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Our multi-threaded & easy-to-use code is
available under an open source licence
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The end

james.newling@idiap.ch



