Fast K-Means with Accurate Bounds
James Newling & Francois Fleuret

Idiap Research Institute
Computer Vision and Learning Group
& EPFL

June 20th, 2016

STIFTUNG Z=I0I30 (L

K-Means
Problem Statement and Lloyd's Algorithm

Given data (%), € (RN, find centers (ck)i_; € (R)K
minimising

N

;kmlif}(lIxi — cill.
NP-hard, so heuristic algorithms such as Lloyd's are used
Lloyd's algorithm run for T iterations requires dKNT FLOPs

We are interested in making it faster

1/9

Lloyd's Algorithm
x : data e . centers

2/9

Lloyd's Algorithm
Assignment of datapoint at iteration 1

2/9

Lloyd's Algorithm

All assignments at iteration 1

2/9

Lloyd's Algorithm
Updates at iteration 1

2/9

Lloyd's Algorithm
Assignment of datapoint at iteration 2

2/9

Lloyd's Algorithm

All assignments at iteration 2

1

i

2/9

Lloyd's Algorithm
Updates at iteration 2

1A

Fi

2/9

Lloyd's Algorithm
Assignment of datapoint at iteration 3

2/9

Lloyd's Algorithm

All assignments at iteration 3

2/9

Lloyd's Algorithm
Updates at iteration 3

X

2/9

Lloyd's Algorithm
Assignment of datapoint at iteration 4

2/9

Lloyd's Algorithm

All assignments at iteration 4

124

=

2/9

Lloyd's Algorithm
Updates at iteration 4

2/9

Lloyd's Algorithm

How to Accelerate

Two approaches :
(1) approximate it

(2) be more efficient - get exactly the same output as Lloyd's
algorithm without all data-center distances

¥ Pelleg et al. (1999) A Elkan (2003) best high-d
¥ Kanungo et al. (2002) A Yinyang (2015) best mid-d
A Hamerly (2010) A Annular (2013) best low-d

3/9

Lloyd's Algorithm

How to Accelerate

Two approaches :

(1) opproximate-it only exact for next 13 minutes

(2) be more efficient - get exactly the same output as Lloyd's
algorithm without all data-center distances

¥ Pelleg et al. (1999) A Elkan (2003) best high-d
¥ Kanungo et al. (2002) A Yinyang (2015) best mid-d
A Hamerly (2010) A Annular (2013) best low-d

3/9

Using The Triangle Inequality

Elkan's Two Techniques

Elkan uses the triangle inequality in two distinct ways

(1) center-center distances to bound data-center distances

(2) directly maintain bounds on data-center distances

4/9

Using The Triangle Inequality

Elkan's Two Techniques

Elkan uses the triangle inequality in two distinct ways
(1) center-center distances to bound data-center distances

(2) directly maintain bounds on data-center distances

N SN

(A) We show that (1) + (2) is slower than just (2). Simplifying helps!

4/9

Usi gThT gll equality
Elkan 1 lower bounds

. Lo
o see e

v

Ho

Using The Triangle Inequality
Yinyang group lower bounds

7N

5/9

Using The Triangle Inequality
Hamerly 1 lower bound

5/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

6/9

Lower bound updating

1> -]l-bound

> |l - l-bound

6/9

I > -|l-bounds

All' upper and lower bounds in Elkan, Hamerly, Yinyang, Annular
are > || - [[-bounds, and can be replaced by tighter || > -||-bounds.

Thereis a cost to || > +||[-bounds, additional memory is required:

« Store historical centers from all rounds
« Store the round in which bounds are made tight

This memory overhead can be controlled by periodically clearing
the history, requiring a >_ || - [[-bound update

7/9

I > -|l-bounds

All' upper and lower bounds in Elkan, Hamerly, Yinyang, Annular

are > || - [[-bounds, and can be replaced by tighter || > -||-bounds.

Thereis a cost to || > +||[-bounds, additional memory is required:

« Store historical centers from all rounds
« Store the round in which bounds are made tight

This memory overhead can be controlled by periodically clearing
the history, requiring a >_ || - [[-bound update

(B) We show that || > -||-bounding generally improves algorithms.

7/9

Hamerly (2010) bound test, failure 1

8/9

Hamerly (2010) bound test, failure 2

8/9

Hamerly (2010) compute all distances

Hamerly (2010) reset bounds

8/9

Eliminating distance calculations

cE€B(x,r)=c&{c), g

°
o’.
°
¢ o e ®
o o ..
° o ® oo
° o o © o °
) []
° °
° o %, 0, 0
® o ...
e ©
o o ® Cgld
e o °
°

r = maxce{cg/dycgld} ||X — C||

8/9

Annular (2013) elimination zone

el > lIxl[+r=c&B(x,r) (e:

centers eliminated)

8/9

Annular (2013) elimination zone

el < lIxll —r=cg&B(x,r) (e:

centers eliminated)

8/9

Annular (2013) elimination zone

[llcll = [Ix[I| < r=c¢&B(x,r) (e: centerseliminated)

8/9

Annular (2013) elimination zone

[llcll = [Ix[I| < r=c¢&B(x,r) (e: centerseliminated)

elimination
O(log N) if
llc|| sorted

8/9

Annular (2013) elimination zone

[llcll = [Ix[I| < r=c¢&B(x,r) (e: centerseliminated)

elimination
O(log N) if
llc|| sorted

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx = eIl + lIx — gl = ¢ € B(x.r)

8/9

Exponion (ours) elimination zone

lle = gl > 2llx — g9l + lIx — gl =

c & B(x,r)

8/9

Exponion (ours) elimination zone

llc — cg/d|| >R=c¢B(x,r)

(e : centers eliminated)

8/9

Exponion (ours) elimination zone

(C) We find that Exponion is generally faster than Annular

8/9

Experiments and Results

22 datasets(d : 2 — 784, N : 60k — 2.6m) and K € {100, 1000}

4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

9/9

Experiments and Results

22 datasets(d : 2 — 784, N : 60k — 2.6m) and K € {100, 1000}

4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

(A) Simplification accelerates,
e Elkan in 16/18 high-d experiments, mean speed-up 15%
e Yinyang in 43/44 all-d experiments, mean speed-up 60%

9/9

Experiments and Results

22 datasets(d : 2 — 784, N : 60k — 2.6m) and K € {100, 1000}

4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

(A) Simplification accelerates,
e Elkan in 16/18 high-d experiments, mean speed-up 15%
e Yinyang in 43/44 all-d experiments, mean speed-up 60%

(B) Replacing > || - ||-bounding by || > -||-bounding helps
e In high-d speed-up in 15/20 experiments, mean speed-up of
12%

9/9

Experiments and Results

22 datasets(d : 2 — 784, N : 60k — 2.6m) and K € {100, 1000}

4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

(A) Simplification accelerates,
e Elkan in 16/18 high-d experiments, mean speed-up 15%
e Yinyang in 43/44 all-d experiments, mean speed-up 60%

(B) Replacing > || - ||-bounding by || > -||-bounding helps
e In high-d speed-up in 15/20 experiments, mean speed-up of
12%

(C) Exponion is generally faster than Annular
e In low-d Exponion is faster than Annular in 18/22 experiments,
mean speed-up of 35%

9/9

Conclusion

%]
Speed-up: run-times 2 o8
of any of the other 4 2 06l |
implementations of 2
any algorithm c 040 1
relative to our fastest % 02 L i
implementations of 2
our algorithms 0 0 8

speed-up

10/9

Conclusion

%]
Speed-up: run-times 2 o8
of any of the other 4 2 06l
implementations of 2
any algorithm c 040
relative to our fastest % 02 L
implementations of 2
our algorithms 0 0

Our multi-threaded & easy-to-use code is
available under an open source licence

10/9

The end

james.newling@idiap.ch

