K-Medoids for K-Means Seeding

James Newling & François Fleuret

Machine Learning Group,
Idiap Research Institute
& EPFL

December 5th, 2017
The standard K-means pipeline

simulated data

$K = 12^2, N = 25K$

uniform K-means++

$LLOYD$

$E = 0.105$

$LLOYD$

$E = 0.072$
The standard K-means pipeline (+CLARANS)

simulated data
$K = 12^2$, $N = 25K$

$E = 0.105$

$E = 0.072$

$E = 0.032$

$E = 0.032$
CLARANS of Ng and Han (1994)

1: while not converged do
2: randomly choose 1 center and 1 non-center
3: if swapping them decreases E then
4: implement the swap
5: end if
6: end while
CLARANS of Ng and Han (1994)

1: while not converged do
2: randomly choose 1 center and 1 non-center
3: if swapping them decreases E then
4: implement the swap
5: end if
6: end while

Avoids local minima of LLOYD by,
- long-range swaps
- updating centers and samples simultaneously.
1: while not converged do
2: randomly choose 1 center and 1 non-center
3: if swapping them decreases E then
4: implement the swap
5: end if
6: end while

Avoids local minima of LLOYD by,

- long-range swaps
- updating centers and samples *simultaneously*.

We present algorithmic improvements, where

- computing new E is $O(N/K)$
- implementing swap is $O(N)$.
Results

- RNA dataset, $d = 8, N = 16 \times 10^4, K = 400$
- 50 runs without CLARANS (red), 24 runs with (blue).

- On 16 datasets, geometric mean improvement is 3%.

CLARANS with Levenshtein metric for sequence data, $l_0, l_1, \ldots, l_\infty$ for sparse/dense vectors, many others, on github.
The end

james.newling@idiap.ch