
K -medoids for K -means seeding
James Newling & François Fleuret

Machine Learning Group,Idiap Research Institute

November 28th, 2017

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE



The standard K -means pipeline
First step: Seeding. Second step: Lloyd’s algorithm

uniform K-means++

E = 0.105 E = 0.072

simulated data
K = 122, N = 25K

LLOYD LLOYD
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The standard K -means pipeline (+CLARANS)

First step: Seeding. second step: Lloyd’s algorithm

uniform K-means++
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simulated data
K = 122, N = 25K
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Talk Outline

1) K -medoids, K -means++ and LLOYD
2) The CLARANS algorithm of Ng and Han (1994), algorithmiccomplexity and improvements
3) Results
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K -medoids problem

Input :
• N samples X = {x(1), . . . , x(N)}
• Dissimilarity function diss : X × X → R

Task :
• Find K indices c(1), . . . , c(K ) ∈ {1, . . . ,N} to minimize

E =

N∑
i=1

min
k=1:K

diss (x(i), x(c(k))) .

• NP-hard.
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K -means++ seeding

• Arthur and Vassilvitskii (2007)
• A K -medoids algorithm for

diss(x(i), x(i ′)) = ‖x(i)− x(i ′)‖2.

1: select c(1) uniformly from {1, . . . ,N}
2: for k = 2 : K do
3: select c(k) = i with prob ∼ mink ′<k diss(x(i), x(c(k ′)))4: end for
• Provides 8 lnK + 2 approximation bound to optimal
K -means solution in expectation
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LLOYD and MEDLLOYD

LLOYD for K -means:
1: C (k)← x(c(k)) for k ∈ {1, . . . ,K}
2: while not converged do
3: for i = 1→ N set a(i) = argmink=1:K ‖x(i)− C (k)‖
4: for k = 1→ K set C (k)←

∑
i :a(i)=k x(i)

||i : a(i) = k ||5: end while

MEDLLOYD for K -medoids similar, with the constraint thatcenters are always samples,

C (k)← x

argmin
i :a(i)=k

∑
i ′:a(i ′)=k

‖x(i)− x(i ′)‖2

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CLARANS

A very simple K -medoids algorithm:
Randomly propose swaps between 1 center and 1non-center, accept if E decreases.
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CLARANSDemonstration

center
non-center

1) propose a swap2) evaluate energy3) implement or reject
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CLARANSDemonstration
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CLARANSDemonstration

accept the swap

1) propose a swap2) evaluate energy3) implement or reject
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CLARANSDemonstration

implement the swap

1) propose a swap2) evaluate energy3) implement or reject
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CLARANSAdvantages

Advantages of CLARANS over MEDLLOYD (and LLOYD) are,
• updates are not local
• assignments and centers change simultaneously

Easy to show that,
• {local minima of CLARANS} ⊆ {local minima of MEDLLOYD}.
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CLARANSComplexity
Ng and Han use N2 dissimilarity matrix, infeasible now
Useful to distinguish between evaluate and implement steps:
1: while stopping condition is false do
2: randomly select center and non-center
3: evaluate proposal energy
4: if proposal energy lower then
5: implement proposed swap
6: end if
7: end while
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CLARANSImproving complexity

We present different levels of optimization:
1. For all samples, record distances to nearest and secondnearest centers (d1 and d2 respectively).
2. Also record for all clusters maximum d1 and d2, andinter-center distances. (4)

Assuming largest cluster is O(N/K ),
1. 2.evaluate O(N) O(NK )implement O(N) O(N)

3. Terminate evaluation early if swap unpromising.
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Empirical speed-up

N = 106/2, K = 103/2, data from 4-d Gaussian with I covariance .
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CLARANS for K -means seedingStopping criterion

Two possible stopping criteria
• Ng and Han stop after R consecutive swap rejections
• Can stop after S implementations (swap accepts)
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We prefer a time based criterion
• If first seeding (with K -means++) takes T0, stop afer ηT0.
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Experiment 1

Subset of RNA dataset, d = 8,N = 16× 104,K = 400.
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50 runs of K -means++→ LLOYD, and several with CLARANS.Number with CLARANS chosen so total times equal. Comparingbest solutions, using CLARANS results in 6% lower E .
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Results Summary
Summary of experiments. Each point is an experiment with samesetup as previous slide, horizontal position is reduction in Eobtained using CLARANS.
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Dataset dimensions range in d : 2→ 90,N : 1484→ 488565.
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K -means++ revisited

From conclusion of K -means++ paper of Arthur and Vassilvitskii(2007):
”Also, experiments showed that k-means++ generally performedbetter if it selected several new centers during each iteration, and thengreedily chose the one that decreased E as much as possible.Unfortunately, our proofs do not carry over to this scenario.”
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K -means++ revisited
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Comparison to version of K -means++ referred to in Conclusionof Arthur and Vassilvitskii (2007) (selecting from best of 5 newcenters). Using CLARANS still improves results, but by less.
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Clustering library: zentas
(4) : diss(x(i), x(i ′)) = ψ(dist(x(i), x(i ′))), where

• ψ : R→ R is non-decreasing
• dist : X × X → R satisfies the4-inequality

Our software zentasimplements acceleratedCLARANS for differentmetrics. Levenshtein forsequence data, l0, l1, . . . , l∞for sparse/dense vectors.Also fast K -means++,LLOYD, many others.
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Conclusion

We discussed CLARANS, and how
• to accelerate it
• it improves seeding for K -means
• it is a versatile clustering algorithm in its own right.
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The end
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