K-medoids for K-means seeding
James Newling & Francois Fleuret

Machine Learning Group,
Idiap Research Institute

November 28th, 2017

I CPA O

1QUE
ANNE

sssssssssssssssss



The standard K-means pipeline

First step: Seeding. Second step: Lloyd's algorithm

PrEEFRGEEDRY
REEARTATHAD 2D
P TApEPATpLL
TrAARRe AN

-
;:;23;:;:;:§ simulated data
:-g.u.‘.'.-.u K = 122’ N = 25K

PR S kEenY

uniform K-means++

LLOYD

E=0072

1/18



The standard K-means pipeline (+CLARANS)

PERESAECA DR
NESRTAT RSS2

ApTAEER AL PSS

il-;i;lo:t:::

sebofrkipis H

sviseisivass simulated data
MaENREYYIACY )

LT E RN ) —_— —
ann K=125, N=25K
F3ERANIESREFS

FrRICX AR KRN

BUA RS e ny

uniform K-means++

1/18



Talk Outline

1) K-medoids, K-means++ and LLOYD

2) The CLARANS algorithm of Ng and Han (1994), algorithmic
complexity and improvements

3) Results

2/18



K-medoids problem

Input :
« Nsamples X = {x(1),..., x(N)}
« Dissimilarity function diss : X x X — R

Task :
- Find K indices ¢(1), ..., c(K)e{l,..., N} to minimize

« NP-hard.

3/18



K-means++ seeding

« Arthur and Vassilvitskii (2007)
« A K-medoids algorithm for

diss(x(1). x(1")) = [lx(i) = x(i)P.

1. select ¢(1) uniformly from {1, ..., N}

2. fork=2:Kdo

3 select c(k) = i with prob ~ ming < diss(x(i), x(c(k")))
4: end for

« Provides 81In K + 2 approximation bound to optimal
K-means solution in expectation

4/18



LLOYD and MEDLLOYD

LLOYD for K-means:

0 C(k) < x(c(k))for ke {1,..., K}
while not converged do
fori=1— Nseta(i) =argmin,_q.x ||x(i) — C(k)||

Zi-a(i):k x(i)
4; fork=1— Kset C(k) + —=/———
(k) i = a(i) = k|

w N =

5. end while

5/18



LLOYD and MEDLLOYD

LLOYD for K-means:

0 C(k) + x(c(k))fork e {1,..., K}
2: while not converged do
3: fori=1— Nseta(i) =argmin,_q.x ||x(i) — C(k)||

RN

Zi'a(i):k x(i)
4; fork=1— Kset C(k) + —=/———
U) < 97 a() = K

5. end while

MEDLLQOYD for K-medoids similar, with the constraint that
centers are always samples,

C(k) + x (argmin > x() x(/’)2>

(=K i 5=k

5/18



CLARANS

A very simple K-medoids algorithm:

Randomly propose swaps between 1 center and 1
non-center, accept if E decreases.

6/18



CLARANS

Demonstration

® center
¢ non-center

7/18



CLARANS

Demonstration

' @ center
¢ non-center

O)

e
[ ]

1) propose a swap

7/18



CLARANS

Demonstration

1) propose a swap
2) evaluate energy

7/18



CLARANS

Demonstration

reject the swap

1) propose a swap
2) evaluate energy
3) implement or reject

7/18



CLARANS

Demonstration

1) propose a swap

7/18



CLARANS

Demonstration

1) propose a swap
2) evaluate energy

7/18



CLARANS

Demonstration

accept the swap

1) propose a swap
2) evaluate energy
3) implement or reject

7/18



CLARANS

Demonstration

implement the swap \

1) propose a swap
2) evaluate energy
3) implement or reject

7/18



CLARANS

Advantages

Advantages of CLARANS over MEDLLOYD (and LLOYD) are,
« updates are not local
« assignments and centers change simultaneously

Easy to show that,
« {local minima of CLARANS} C {local minima of MEDLLOYD}.

8/18



CLARANS
Complexity

Ng and Han use N? dissimilarity matrix, infeasible now

Useful to distinguish between evaluate and implement steps:

1. while stopping condition is false do

2 randomly select center and non-center
3 evaluate proposal energy

4: if proposal energy lower then

5 implement proposed swap

6
7.

end if
end while
3 T T T T e e
S 10°F et L .
g 102 r . . “-;““,‘.:__..:-. ‘..'- . . -- = k
© E . . B o .
> 10! L LN T T - : ) ’ ;
100 Bl [ M L L .
0 50 100 150 200 250 300

implement (cumulative)

9/18



CLARANS

Improving complexity

We present different levels of optimization:

1. For all samples, record distances to nearest and second

nearest centers (d; and d, respectively).

2. Also record for all clusters maximum d; and d», and

inter-center distances. (A)
Assuming largest cluster is O(N/K),
1 2

evaluate O(N) O(%)
implement  O(N)  O(N)

3. Terminate evaluation early if swap unpromising.

10/18



Empirical speed-up

N = 10°/2, K = 103/2, data from 4-d Gaussian with / covariance .

0.36
0.34
W .32
0.30

0.28
0

0.36
0.34
W .32
0.30
0.28

0.0

S~ T

3

10

20

30 40 50
time [s]

0.2

number of distance calculations

0.4 0.6 0.8
x10°

11/18



CLARANS for K-means seeding
Stopping criterion

Two possible stopping criteria
« Ng and Han stop after R consecutive swap rejections
- Can stop after S implementations (swap accepts)

£ T T T T T T
8 10%F P R Ay B
S R ) RIS s -
S 10 3 s - ' ]
[} E o '. A L .t . E
100 - s e . < . | 1 | |
0 50 100 150 S 250 300

implement (cumulative)

We prefer a time based criterion
« If first seeding (with K-means++) takes Ty, stop afer n To.

12/18



Experiment 1

Subset of RNA dataset, d = 8, N = 16 x 10%, K = 400.

18 [ T I.\ T T T T T ]
1.6+ W —
W 14F .
1.2+ - .
1.0 1 1 - 1 1 1 [T - X

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

time [s]
.K—means++ . .LLOYD
K-means++ CLARANS (n =2) LLOYD

50 runs of K-means++ — LLOYD, and several with CLARANS.
Number with CLARANS chosen so total times equal. Comparing
best solutions, using CLARANS results in 6% lower E.

13/18



Results Summary

Summary of experiments. Each point is an experiment with same
setup as previous slide, horizontal position is reduction in E
obtained using CLARANS.

1.0 T
. vl
8
S 06l 0v/N |4
[
O
o 0.4 1
ie]
pras}
S 0.2l ]
=
O 1 1
1 1.05 1.15 1.25

(E without CLARANS) / (E with CLARANS)

Dataset dimensions range in d : 2 — 90, N : 1484 — 488565.

14/18



K-means++ revisited

From conclusion of K-means++ paper of Arthur and Vassilvitskii
(2007):

"Also, experiments showed that k-means++ generally performed
better if it selected several new centers during each iteration, and then

greedily chose the one that decreased E as much as possible.
Unfortunately, our proofs do not carry over to this scenario.”

15/18



K-means++ revisited

1.0 T T
2 08 K=0.1VN ||
2 —o K=+N
506 e K=10/N |
G
O
c 04 =
.9
)
& 0.2 .
[y

OO 1 1 1

1 105 1.15 1.25

(E without CLARANS) / (E with CLARANS)
Comparison to version of K-means++ referred to in Conclusion

of Arthur and Vassilvitskii (2007) (selecting from best of 5 new
centers). Using CLARANS still improves results, but by less.

16/18



Clustering library: zentas

(A) = diss(x(i), x(i") = Y(dist(x(i), x(i"))), where
« ¢ : R — R is non-decreasing
e dist : X x X — R satisfies the A-inequality

Our software zentas
implements accelerated
CLARANS for different
metrics. Levenshtein for
sequence data, p, i1, . .., lso
for sparse/dense vectors.
Also fast K-means++,
LLOYD, many others.

17/18



Conclusion

We discussed CLARANS, and how
- to accelerate it
- itimproves seeding for K-means
« itis a versatile clustering algorithm in its own right.

18/18



The end

james.newling@idiap.ch



