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The standard K-means pipeline

First step: Seeding. Second step: Lloyd's algorithm
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The standard K-means pipeline (+CLARANS)

PERESAECA DR
NESRTAT RSS2

ApTAEER AL PSS

il-;i;lo:t:::

sebofrkipis H

sviseisivass simulated data
MaENREYYIACY )

LT E RN ) —_— —
ann K=125, N=25K
F3ERANIESREFS

FrRICX AR KRN

BUA RS e ny

uniform K-means++

1/18



Talk Outline

1) K-medoids, K-means++ and LLOYD

2) The CLARANS algorithm of Ng and Han (1994), algorithmic
complexity and improvements

3) Results
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K-medoids problem

Input :
« Nsamples X = {x(1),..., x(N)}
« Dissimilarity function diss : X x X — R

Task :
- Find K indices ¢(1), ..., c(K)e{l,..., N} to minimize

« NP-hard.
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K-means++ seeding

« Arthur and Vassilvitskii (2007)
« A K-medoids algorithm for

diss(x(1). x(1")) = [lx(i) = x(i)P.

1. select ¢(1) uniformly from {1, ..., N}

2. fork=2:Kdo

3 select c(k) = i with prob ~ ming < diss(x(i), x(c(k")))
4: end for

« Provides 81In K + 2 approximation bound to optimal
K-means solution in expectation
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LLOYD and MEDLLOYD

LLOYD for K-means:

0 C(k) < x(c(k))for ke {1,..., K}
while not converged do
fori=1— Nseta(i) =argmin,_q.x ||x(i) — C(k)||

Zi-a(i):k x(i)
4; fork=1— Kset C(k) + —=/———
(k) i = a(i) = k|

w N =

5. end while
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LLOYD and MEDLLOYD

LLOYD for K-means:

0 C(k) + x(c(k))fork e {1,..., K}
2: while not converged do
3: fori=1— Nseta(i) =argmin,_q.x ||x(i) — C(k)||

RN

Zi'a(i):k x(i)
4; fork=1— Kset C(k) + —=/———
U) < 97 a() = K

5. end while

MEDLLQOYD for K-medoids similar, with the constraint that
centers are always samples,

C(k) + x (argmin > x() x(/’)2>

(=K i 5=k
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CLARANS

A very simple K-medoids algorithm:

Randomly propose swaps between 1 center and 1
non-center, accept if E decreases.
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CLARANS

Demonstration

® center
¢ non-center
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CLARANS

Demonstration
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CLARANS

Demonstration

1) propose a swap
2) evaluate energy
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CLARANS

Demonstration

reject the swap

1) propose a swap
2) evaluate energy
3) implement or reject
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CLARANS

Demonstration
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CLARANS

Demonstration

1) propose a swap
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CLARANS

Demonstration

accept the swap

1) propose a swap
2) evaluate energy
3) implement or reject
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CLARANS

Demonstration

implement the swap \

1) propose a swap
2) evaluate energy
3) implement or reject
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CLARANS

Advantages

Advantages of CLARANS over MEDLLOYD (and LLOYD) are,
« updates are not local
« assignments and centers change simultaneously

Easy to show that,
« {local minima of CLARANS} C {local minima of MEDLLOYD}.
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CLARANS
Complexity

Ng and Han use N? dissimilarity matrix, infeasible now

Useful to distinguish between evaluate and implement steps:

1. while stopping condition is false do

2 randomly select center and non-center
3 evaluate proposal energy

4: if proposal energy lower then

5 implement proposed swap

6
7.

end if
end while
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CLARANS

Improving complexity

We present different levels of optimization:

1. For all samples, record distances to nearest and second

nearest centers (d; and d, respectively).

2. Also record for all clusters maximum d; and d», and

inter-center distances. (A)
Assuming largest cluster is O(N/K),
1 2

evaluate O(N) O(%)
implement  O(N)  O(N)

3. Terminate evaluation early if swap unpromising.
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Empirical speed-up

N = 10°/2, K = 103/2, data from 4-d Gaussian with / covariance .
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CLARANS for K-means seeding
Stopping criterion

Two possible stopping criteria
« Ng and Han stop after R consecutive swap rejections
- Can stop after S implementations (swap accepts)
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We prefer a time based criterion
« If first seeding (with K-means++) takes Ty, stop afer n To.
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Experiment 1

Subset of RNA dataset, d = 8, N = 16 x 10%, K = 400.
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50 runs of K-means++ — LLOYD, and several with CLARANS.
Number with CLARANS chosen so total times equal. Comparing
best solutions, using CLARANS results in 6% lower E.
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Results Summary

Summary of experiments. Each point is an experiment with same
setup as previous slide, horizontal position is reduction in E
obtained using CLARANS.
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Dataset dimensions range in d : 2 — 90, N : 1484 — 488565.
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K-means++ revisited

From conclusion of K-means++ paper of Arthur and Vassilvitskii
(2007):

"Also, experiments showed that k-means++ generally performed
better if it selected several new centers during each iteration, and then

greedily chose the one that decreased E as much as possible.
Unfortunately, our proofs do not carry over to this scenario.”
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K-means++ revisited

1.0 T T
2 08 K=0.1VN ||
2 —o K=+N
506 e K=10/N |
G
O
c 04 =
.9
)
& 0.2 .
[y

OO 1 1 1

1 105 1.15 1.25
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Comparison to version of K-means++ referred to in Conclusion

of Arthur and Vassilvitskii (2007) (selecting from best of 5 new
centers). Using CLARANS still improves results, but by less.
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Clustering library: zentas

(A) = diss(x(i), x(i") = Y(dist(x(i), x(i"))), where
« ¢ : R — R is non-decreasing
e dist : X x X — R satisfies the A-inequality

Our software zentas
implements accelerated
CLARANS for different
metrics. Levenshtein for
sequence data, p, i1, . .., lso
for sparse/dense vectors.
Also fast K-means++,
LLOYD, many others.
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Conclusion

We discussed CLARANS, and how
- to accelerate it
- itimproves seeding for K-means
« itis a versatile clustering algorithm in its own right.
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The end
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